JOM KITA KE POLITEKNIK
Image from Google Jackets

Structure of dynein-dynactin on microtubules shows tandem adaptor binding

By: Contributor(s): Publication details: 2022-09-07.Subject(s): Genre/Form: Online resources: Summary: Cytoplasmic dynein is a microtubule motor that is activated by its cofactor dynactin and a coiled-coil cargo adaptor(1-3). Up to two dynein dimers can be recruited per dynactin, and interactions between them affect their combined motile behaviour(4-6). Different coiled-coil adaptors are linked to different cargos(7,8), and some share motifs known to contact sites on dynein and dynactin(4,9-13). There is currently limited structural information on how the resulting complex interacts with microtubules and how adaptors are recruited. Here, we develop a cryo-EM processing pipeline to solve the high-resolution structure of dynein-dynactin and the adaptor BICDR1 bound to microtubules. This reveals the asymmetric interactions between neighbouring dynein motor domains and how they relate to motile behaviour. We find unexpectedly that two adaptors occupy the complex. Both adaptors make similar interactions with the dyneins but diverge in their contacts with each other and dynactin. Our structure has implications for the stability and stoichiometry of motor recruitment by cargos.
Item type:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

/pmc/articles/PMC7613678/

/pubmed/36071160

Cytoplasmic dynein is a microtubule motor that is activated by its cofactor dynactin and a coiled-coil cargo adaptor(1-3). Up to two dynein dimers can be recruited per dynactin, and interactions between them affect their combined motile behaviour(4-6). Different coiled-coil adaptors are linked to different cargos(7,8), and some share motifs known to contact sites on dynein and dynactin(4,9-13). There is currently limited structural information on how the resulting complex interacts with microtubules and how adaptors are recruited. Here, we develop a cryo-EM processing pipeline to solve the high-resolution structure of dynein-dynactin and the adaptor BICDR1 bound to microtubules. This reveals the asymmetric interactions between neighbouring dynein motor domains and how they relate to motile behaviour. We find unexpectedly that two adaptors occupy the complex. Both adaptors make similar interactions with the dyneins but diverge in their contacts with each other and dynactin. Our structure has implications for the stability and stoichiometry of motor recruitment by cargos.

en

There are no comments on this title.

to post a comment.