JOM KITA KE POLITEKNIK
Image from Google Jackets

Covid-19 Diagnosis by WE-SAJ

By: Contributor(s): Publication details: 2022-12-31.Subject(s): Genre/Form: Online resources: Summary: With a global COVID-19 pandemic, the number of confirmed patients increases rapidly, leaving the world with very few medical resources. Therefore, the fast diagnosis and monitoring of COVID-19 are one of the world's most critical challenges today. Artificial intelligence-based CT image classification models can quickly and accurately distinguish infected patients from healthy populations. Our research proposes a deep learning model (WE-SAJ) using wavelet entropy for feature extraction, two-layer FNNs for classification and the adaptive Jaya algorithm as a training algorithm. It achieves superior performance compared to the Jaya-based model. The model has a sensitivity of 85.47±1.84, specificity of 87.23±1.67 precision of 87.03±1.34, an accuracy of 86.35±0.70, and F1 score of 86.23±0.77, Matthews correlation coefficient of 72.75±1.38, and Fowlkes-Mallows Index of 86.24±0.76. Our experiments demonstrate the potential of artificial intelligence techniques for COVID-19 diagnosis and the effectiveness of the Self-adaptive Jaya algorithm compared to the Jaya algorithm for medical image classification tasks.
Item type:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode Item holds
Beaconhouse Newlands Available bk3000000000
Total holds: 0

/pmc/articles/PMC7613983/

/pubmed/36568847

With a global COVID-19 pandemic, the number of confirmed patients increases rapidly, leaving the world with very few medical resources. Therefore, the fast diagnosis and monitoring of COVID-19 are one of the world's most critical challenges today. Artificial intelligence-based CT image classification models can quickly and accurately distinguish infected patients from healthy populations. Our research proposes a deep learning model (WE-SAJ) using wavelet entropy for feature extraction, two-layer FNNs for classification and the adaptive Jaya algorithm as a training algorithm. It achieves superior performance compared to the Jaya-based model. The model has a sensitivity of 85.47±1.84, specificity of 87.23±1.67 precision of 87.03±1.34, an accuracy of 86.35±0.70, and F1 score of 86.23±0.77, Matthews correlation coefficient of 72.75±1.38, and Fowlkes-Mallows Index of 86.24±0.76. Our experiments demonstrate the potential of artificial intelligence techniques for COVID-19 diagnosis and the effectiveness of the Self-adaptive Jaya algorithm compared to the Jaya algorithm for medical image classification tasks.

en

There are no comments on this title.

to post a comment.