Charting a course for smartphones and wearables to transform population health research
Publication details: 2023-02-07.Subject(s): Genre/Form: Online resources: Summary: The use of data from smartphones and wearable devices has huge potential for population health research given high device ownership, the range of novel health-relevant data types available from consumer devices, and the frequency and duration over which data are, or could be, collected. Yet the uptake and success of large-scale mobile health research in the last decade has not matched the hyped opportunity. We make the argument that digital person-generated health data is required and necessary to answer many top priority research questions through illustrative examples taken from the James Lind Alliance Priority Setting Partnership. We then summarise the findings from two UK initiatives that considered the challenges and possible solutions for what needs to be done, and in what way, to realise the future opportunities of digital person-generated health data for clinically important population health research. Examples of important areas to be addressed to advance the field include digital inequality and addressing possible selection bias, easy access for researchers to the appropriate data collection tools including how best to harmonise data items, analysis methodology for time series data, methods for patient and public involvement and engagement to optimise recruitment, retention and public trust, and providing greater control of their data to research participants. There is also a major opportunity through the linkage of digital persongenerated health data to routinely-collected data to support novel population health research, bringing together clinician-reported and patient-reported measures. We recognise that well conducted studies need a wide range of diverse challenges to be skilfully addressed in unison: for example, epidemiology, data science and biostatistics, psychometrics, behavioural and social science, software engineering, user interface design, information governance, data management and patient and public involvement and engagement. Consequently, progress would be accelerated by the establishment of a new interdisciplinary community where all relevant and necessary skills are brought together to allow excellence throughout the lifecycle of a research study. This will require a partnership of diverse people, of methods and of technology. Get this right and the synergy has the potential to transform many millions of people's lives for the better./pmc/articles/PMC7614184/
/pubmed/36749628
The use of data from smartphones and wearable devices has huge potential for population health research given high device ownership, the range of novel health-relevant data types available from consumer devices, and the frequency and duration over which data are, or could be, collected. Yet the uptake and success of large-scale mobile health research in the last decade has not matched the hyped opportunity. We make the argument that digital person-generated health data is required and necessary to answer many top priority research questions through illustrative examples taken from the James Lind Alliance Priority Setting Partnership. We then summarise the findings from two UK initiatives that considered the challenges and possible solutions for what needs to be done, and in what way, to realise the future opportunities of digital person-generated health data for clinically important population health research. Examples of important areas to be addressed to advance the field include digital inequality and addressing possible selection bias, easy access for researchers to the appropriate data collection tools including how best to harmonise data items, analysis methodology for time series data, methods for patient and public involvement and engagement to optimise recruitment, retention and public trust, and providing greater control of their data to research participants. There is also a major opportunity through the linkage of digital persongenerated health data to routinely-collected data to support novel population health research, bringing together clinician-reported and patient-reported measures. We recognise that well conducted studies need a wide range of diverse challenges to be skilfully addressed in unison: for example, epidemiology, data science and biostatistics, psychometrics, behavioural and social science, software engineering, user interface design, information governance, data management and patient and public involvement and engagement. Consequently, progress would be accelerated by the establishment of a new interdisciplinary community where all relevant and necessary skills are brought together to allow excellence throughout the lifecycle of a research study. This will require a partnership of diverse people, of methods and of technology. Get this right and the synergy has the potential to transform many millions of people's lives for the better.
https://creativecommons.org/licenses/by/4.0/This is a privileged document currently under peer-review/community review. Authors have provided JMIR Publications with an exclusive license to publish this preprint on it's website for review purposes only. While the final peer-reviewed paper may be licensed under a CC BY license on publication, at this stage authors and publisher expressively prohibit redistribution of this draft paper other than for review purposeshttps://creativecommons.org/licenses/by/4.0/.
en
There are no comments on this title.